10 Designing DEWATS If the planning engineer knows his or her craft and recognises his or her limitations, designing DEWATS is relatively simple. Treatment-system performance cannot be precisely predicted and, therefore, calculating of dimensions should not involve ambitious procedures; in the case of small- and medium-scale DEWATS, a slightly oversized plant volume adds to operational safety. Based on local conditions, needs and preferences, plants of varying sizes can be chosen as standard designs. On-site adaptations can then be made by lessqualified site supervisors or technicians. In the case of specific demands, calculations and design must be carried out individually; the structural details of the standardised plants can be integrated. In this chapter we introduce a simplified, quasi-standardised method of calculating dimensions using spreadsheets. Co-operative plant systems that require interconnecting sewerage must be designed individually by an experienced engineer, who is able to place plants and sewers according to contours and other site requirements. #### 10.1 Technical spreadsheets - background #### 10.1.1 Usefulness of computer calculation The purpose of this chapter is to provide the engineer with tools to produce his or her own spreadsheets for sizing DEWATS in any computer programme that he or she is familiar with. The exercise of producing one's own tables will compel engineers to deepen their understanding of design. The curves that have been used as the basis for calculation in the formulas applied in the computer spreadsheets may also be of interest to those who do not use a computer (these are found in this chapter). As these curves visualise the most important relationships between various parameters, they will enhance understanding of the factors that influence the treatment process. It should be noticed that the graphs have been developed on the basis of mixed information; the methods of calculation, therefore, do not always follow the same logic. Computerised calculations can be very helpful, particularly if the formulas and the input data are correct. Flawed assumptions or wrong data, on the other hand, will definitely result in worthless results. Nevertheless, assuming the input data is correct, spreadsheets provide a quick impression of the plant's space requirement and what treatment performance can be expected. Ready-to-use computer spreadsheets are especially helpful to those who do not design DEWATS on a daily basis and would otherwise need to recollect the entire theory for sizing a plant before starting to design. Please bear in mind that DEWATS provides a set of approaches. The equations used in the technical spreadsheets do rely on certain assumptions. Because of the very different parameters that are relevant for the performances of a plan (temperature, materials to be used, composition of the wastewater etc.) there is not a "right way" to calculate dimensions. It is the experience and understanding of the planner that is crucial to create the designs most appropriate to local conditions – i. e. the wastewater problem. #### 10.1.2 Risks of using simplified formulas The formulas applied in the spreadsheets have been developed by practitioners, who are not overly concerned with theoretical knowledge. But the formulas are based on scientific findings, which have been simplified in the light of of practical experience. Even if the formulas were to be 100% correct, the results would not be 100% accurate, as input data is not fully reliable. But the accuracy of the formulas is likely to be greater than the accuracy of wastewater sampling and analysis. There are many unknown factors influencing treatment efficiency and "scientific" handbooks provide a possible range of results. But this book, although "scientifically" based, is written for people who have to build a real plant out of real building materials. The supervisor cannot tell the mason to make a concrete tank "about 4.90m to 5.60m long"; he or she must say: "The length should be 5.35m". The following spreadsheets were designed in this spirit. Anyone who already uses more variable methods of calculation and who is not the target reader of this book is free to modify the formulas and curves according to his or her experience and ability (the authors welcome any information that would help to improve the spreadsheets). # 10 Designing DEWATS As the formulas represent simplifications of complex natural processes, there is a certain risk that they do not reflect reality adequately. However, the risk of changes in the assumed reality is even greater; for example, expanding a factory without enlarging the treatment system is obviously more significant than an assumed BOD of 350mg/l, when in reality it is only 300mg/l. Listed below are some examples of incorrect assumptions and their consequences: - underestimating sludge accumulation in septic tanks, sedimentation ponds, Imhoff tanks and anaerobic reactors results in shorter desludging intervals - in the case of anaerobic reactors, severe under-sizing could lead to a collapse of the process, while over-sizing may require longer maturation time at the beginning - incorrect treatment performance of primary or secondary treatment steps could be the cause of over- or undersized post-treatment facilities. This may result in unnecessarily high investment costs or having to enlarge the posttreatment facilities - undersized anaerobic ponds will develop odour, while slightly oversized ponds may not develop sufficient scum, also resulting in smells - undersized aerobic ponds can develop an odour; there is no harm in oversizing aerobic ponds - the biggest risk lies in filter media clogging in both anaerobic tanks and constructed wetlands. However, the risk is more likely to come from inferior filter material, faulty structural details or incorrect wastewater data than from incorrect sizing In general, moderate oversizing reduces the risk of unstable processes and inferior treatment results. #### 10.1.3 About the spreadsheets The spreadsheets presented in this handbook are in Microsoft EXCEL; other suitable programmes may also be used. There might be differences in the syntax of formulas, for example 3^2 (3 to the power of 2) may be written as =POWER(3;2) or =3^2, square root of 9 could be =SQRT(9) or =9^1/2, cubic root of 27 would be =power(27;1/3) or =27^1/3. Some programmes may accept only one of the alternatives. The spreadsheets are based on data which is normally available to the planning engineer within the context of DEWATS. For example, while the measurement of BOD_5 and COD may be possible at the beginning of planning, it is unlikely that the BOD_5 will be regularly controlled later on. Therefore, calculations are based on COD or the results of BOD-based formulas have been set in relation to COD, and vice versa. In the following, the term BOD stands for BOD_5 . The formulas applied in the spreadsheets are based on curves from scientific publications, handbooks and the experience of BORDA and its partners. The formulas, therefore, define typical trends. For example, it is well-known that the removal efficiency of an anaerobic reactor increases when the COD/BOD ratio is narrow. Such curves have been simplified into a chain of straight lines to allow the reader to easily understand the formulas – and to adjust their values to local conditions if necessary. Although the amount of data on which some of these curves are based is sometimes too insignificant to be statistically relevant, the formulas have been applied successfully and adjusted on the basis of practical experience. The formulas are simple. Besides basic arithmetical operations, they use only one logical function, namely the "IF"-function. For example: If temperature is less than 20°C; then hydraulic retention time is 20 days; if not, then it is 15 days in case the temperature is less than 25°C; otherwise (this means, if temperature is over 25°C) the HRT is 10 days. # 10 Designing DEWATS Assuming the temperature is stated in cell F5 of the spreadsheet, the formula for retention time will be written as: =IF(F5<20;20;IF(F5<25;15:10)). The formulas have been kept simple, so that the user can make modifications, according to experience or superior knowledge. For example, if it has been found that, for a certain substrate, the HRT should be 25 days below 20°C, 23 days up to 25°C and 20 days above 25°C and, that for safety reasons, 10% longer retention time is added, then the formula should read: #### = 110%* IF (F5 < 20; 25; IF (F5 < 25; 23; 20)). Picture 10_1: The graphical expression of the "rule of three" for solving proportions: if we know three numbers a, b, and c, and want to find d such that a/b = c/d, then d = cb/a. Values between defined days or amounts may be calculated by using the famous "rule of three", of which there are plenty of examples in the following tables. The slope of a straight line is expressed in its tangent; the height of a certain point is found by multiplying the length with the ratio of the slope, i.e. total height divided by total length (Picture 10_1). In case the reader is not familiar with working in EXCEL, it is better not to modify formulas but to manipulate the results by entering "modified" data. For example, if the values of spreadsheet results are generally lower or higher than the experienced in the field, dimensioning can be adjusted by entering lower or higher temperature values, or shorter or longer retention times. One could also multiply wastewater volumes or COD concentrations by a safety factor before starting the calculation. To avoid mishaps, all the spreadsheet cells should be locked, except the ones written in bold figures. When the user prepares his or her own tables and copies the formulas below, the columns (A; B; C; D...) and the rows (1; 2; 3; 4; 5...) before the "equals" symbol of each formula, define which cell the formula should be written in. The names of
cells and rows are shown on the entry mask of the monitor. In transferring formulas to the spreadsheet, the cell name before the "equals" symbol should not be copied: for example E6=D5/E5 should be written in cell E6 as =D5/E5. The italic figures are either guiding figures to show usual values, or they indicate limits to be observed. The bold figures are those which have to be filled in by hand; the other figures are calculated. Columns which are labelled "given" contain data which reflects a given reality, for example, wastewater-flow volume or wastewater strength. Columns which are labelled "chosen" contain data which may be modified to optimise the design, for example, hydraulic retention time or desludging intervals. All other cells contain formulas and should be locked, in order to avoid deleting by accident formulas. Cells which are labelled "check" or "require" should be used to confirm whether the chosen and given values are realistic. #### 10.2 Technical spreadsheets - application #### 10.2.1 Assumed COD/BOD ratio The COD/BOD ratio widens during biological treatment because the BOD reflects only that part of the oxygen demand which is reduced by biological treatment, while the COD represents total oxygen demand. The removed BOD, therefore, has a greater percentage-wise influence on the change of the BOD than on the COD. The COD/BOD ratio widens faster while biological degradation is incomplete, and slower when treatment efficiency reaches almost 100%. Picture 10_2: COD removal in relation to temperature in anaerobic reactors. Change of COD/BOD ratio during anaerobic treatment. The samples have been taken by SIITRAT from anaerobic filters, most of them serving schools in the suburbs of Delhi, India Picture 10_3: COD removal relative to wastewater strength in anaerobic filters. Simplified curve of Picture 10_2, which is used in the spreadsheet formulas #### 10.2.2 Domestic wastewater quantity and quality The following spreadsheet (see Table 24) helps to define domestic wastewater in terms of the number of people and the wastewater they discharge. BOD and water-consumption figures vary widely from place to place and, therefore, should be obtained for each site. Formulas of spreadsheet "wastewater per capita": $$E5 = A5 \times C5 / 1000$$ $F5 = A5 \times B5 / E5$ $G5 = D5 \times F5$ | | А | В | С | D | Е | F | G | | | | | | |---|----------------------------------|------------------------------|-------------------------------|---|------------|-------------------------------|------------------|--|--|--|--|--| | 1 | Wastewater production per capita | | | | | | | | | | | | | 2 | user | BOD ₅ per
user | water
consump.
per user | COD/BOD ₅ daily flow of wastewater | | BOD ₅
concentr. | COD
concentr. | | | | | | | 3 | given | given | given | given | calculated | calculated | approx. | | | | | | | 4 | number | g/day | litres/day | mg/l | m³/day | mg/l | mg/l | | | | | | | 5 | 80 | 55 | 165 | 1.90 | 13.20 | 333 | 633 | | | | | | | 6 | range => | 40 - 65 | 50 - 300 | | | | | | | | | | Picture 10 4: Illustration to spreadsheet for calculation of anaerobic filter dimensions. Changes of COD/ **BOD** ratio during anaerobic treatment of domestic wastewater. The samples were taken by SIITRAT. The few sample points of high COD/BOD ratio (to the right of the graph) stem from a post-treatment plant and are not comparable to the majority of samples Table 24: Spreadsheet for calculation of quantity and quality of domestic-waste-water production # 10 Designing DEWATS #### 10.2.3 Septic tank The size of septic tanks is standardised in most countries. In the case of DEWATS, however, the wastewater may not be the standard domestic wastewater. The spreadsheet (see Table 25) assists in the design of septic tanks. Flow volume, number of peak hours of flow and pollution load are the basic entries. "Chosen" parameters include the desludging interval and the HRT; the former is decisive for the digester volume for sludge storage, while the latter decides the volume of the liquid. As sludge compacts with time, the formulas in the spreadsheets are based on the graph shown in Picture 10_5. Picture 10_5: Reduction of sludge volume during storage COD-removal rates in settlers and septic tanks depend on the amount of settleable solids, their COD content and the intensity of inoculation with fresh inflow. The contact between fresh incoming substrate and active sludge in Imhoff tanks is nearly zero, while in sedimentation ponds with a deep inlet, it is intensive. This fact has been taken into consideration by dividing the parameter "settleable SS per COD" by an experience factor of between 0.50 and 0.60. The general tendency is shown in the graph Picture 10 6. Picture 10_6: COD removal in settlers Picture 10_7: Illustration to spreadsheet for calculation of septic tank dimensions ### Formulas of spreadsheet "septic tank" | | А | В | С | D | Е | F | G | Н | I | J | |----|-------------------------------|---|---|-------------------------|----------------------------|--------------------|-------------------------------|---------------------------|------------------------------------|---| | 1 | | | Gen | eral spreadsh | eet for septic | tank, input an | d treatment d | lata | | | | 2 | daily
waste-
water flow | time of
most
waste-
water flow | max. flow
at peak
hours | COD
inflow | BOD ₅
inflow | HRT
inside tank | settleable
SS/COD
ratio | COD
removal
rate | COD
outflow | BOD ₅
outflow | | 3 | given | given | calcul. | given | given | chosen | given | calcul. | calcul. | calcul. | | 4 | m³/day | h | m³/h | mg/l | mg/l | h | mg/l | % | mg/l | mg/l | | 5 | 13.0 | 12 | 1.08 | 633 | 333 | 18 | 0.42 | 35% | 411 | 209 | | 6 | | | C | COD/BOD ₅ -> | 1.90 | 12 - 24 h 0. | 35 - 0.45 dome | estic | BOD rem> | 1.06 | | 7 | | | | | dimensions of | of septic tank | | | | | | 8 | desludging
interval | inner
width of
septic tank | min. water
depth
at outlet
point | inner leng
char | yth of first
nber | length o
char | f second
mber | volume
incl.
sludge | actual
volume of
septic tank | biogas
70% CH ₄
50% dis-
solved | | 9 | chosen | chosen | chosen | requir. | chosen | requir. | chosen | requir. | check | calcul. | | 10 | months | m | m | m | m | m | m | m³ | m³ | m³/d | | 11 | 12 | 2.50 | 2.00 | 3.13 | 3.10 | 1.56 | 1.56 1.55 | | 23.25 | 0.72 | | 12 | | | | | | sludge | I/g BOD rem. | 0.0042 | | | #### Table 25: 10 Spreadsheet for calculating septic tank dimensions ``` C5=A5/B5 ``` ``` H5 = G5 \ / \ 0.6 \times IF \ (F5 < 1; \ F5 \times 0.3; \ IF \ (F5 < 3; \ (F51) \times 0.1/2 \ + \ 0.3; \ IF \ (F5 < 30; \ (F5 - 3) \times 0.15/27 \ + \ 0.4; \ 0.55))) ``` The formula relates to Picture 10_6. The number 0.6 is a correction factor based on practical experience. ``` I5 = (1 - H5) x D5 J5 = (1 - H5 x J6) x E5 E6 = D5 / E5 J6 = IF (H5 < 0.5; 1.06; IF (H5 < 0.75; (H5 - 0.5) x 0.065 / 0.25 + 1.06; IF (H5 < 0.85;1.125 - (H5 - 0.75) x 0.1 /0.1; 1.025))) ``` The formula relates to Picture 10_3. ``` D11 = 2/3 x H11 / B11 / C11 F11 = D11 / 2 H11 = IF (H12 x (E5 - J5) / 1000 x A11 x 30 x A5 + C5 x F5 < 2 x A5 x F5 / 24; 2 x A5 x F5 / 24; H12 x (E5 - J5) / 1000 x A11 x 30 x A5 + C5 x F5) + 0.2 x B11 x E11 ``` The formula takes into account that sludge volume is less than half the total volume. ``` I11 = (E11 + G11) \times C11 \times B11 J11 = (D5 - I5) \times A5 \times 0.35 / 1000 / 0.7 \times 0.5 350 \text{ I methane are produced from each kg COD removed.} H12 = 0.005 \times IF (A11 < 36; 1 - A11 \times 0.014; IF (A11 < 120; 0.5 - (A11 - 36) \times 0.002; 1/3)) ``` The formula relates to Picture 10_5. #### 10.2.4 Fully mixed digester Within a fully mixed digester, or biogas plant, as it is commonly known in rural households in India, cattle dung is thoroughly mixed with water. Even as effluent, the substrate is very viscous; very little sludge settles and, as a result, no sludge must be removed for many years. The same type of rural biogas plant in China receives a substrate which is a mixture of human excreta, pig dung and water – however, less homogeneous by far than in India. Other wastewater, for example from slaughter-houses, may have different properties again. It is difficult, therefore, to calculate dimensions for the many different kinds of "strong" wastewater, for which biogas treatment might be suitable. The following spreadsheet should be used with certain reservations and – formulas may need to be adapted to local conditions. The spreadsheet does reveal, however, the influencing factors. The formulas are based on the following assumptions: - solids which settle within one day of benchmark testing represent 95%. of all settleable solids - there is a mixing effect inside the digester because of the relatively high gas production, which prevents sludge from settling. Any additional sludge will only make up for the loss in volume by compression. Thus, the accumulating sludge volume is equal to the amount calculated from the one day of benchmark testing - all settleable and non-settleable solids will digest within hydraulic retention times typical for sludge reactors - 95% of their BOD is removed after 25 days and 30°C; this is equivalent to 400l of biogas produced from 1kg of organic dry matter Picture 10_8: Gas production of fixed-dome biogas plants in relation to **HRT** Picture 10 9: Gas production of fixed-dome biogas plants in relation to temperature Formulas of spreadsheet "fully mixed digester" ``` D5 = B5 \times C5 I5 = IF (F5 < 10; F5 \times 0.75 / 10; IF (F5 < 20; (F5 - 10) \times 0.19 / 10 + 0.75; (F5 - 20) \times 0.06 / 10 + 0.94)) ``` The formula relates to Picture 10_8. ``` J5 = IF (G5 < 5; 0; IF (G5 < 10; (G5 - 5) × 0.4 / 5; IF (G5 < 25; (G5 - 10) × 0.5 / 15 + 0.4; (G5
- 25) × 0.1 / 5 + 0.9))) ``` The formula relates to Picture 10 9. ``` K5 = H5 x I5 x J5 x A5 x D5 B11 = 1.1 x ((1000 x K5 x L5 / A11 / 0.35) / (0.95 x I5 x J5)) x (1 - 0.95 x I5 x J5) / A5 ``` The formula determines the influent COD and calculates the COD removal by assuming a production of 350 I methane per kg COD removed; the additional 10% represent the inorganic COD, which is not removed. ``` D11 = 30 x C11 x A5 x E5 / 1000 E11 = F5 x A5 F11 = D11 + E11 H11 = K5 x G11 L11 = 2 x SQRT ((H11 / J11 - (K11 / 2) x (K11 / 2) x PI()) / PI()) ``` The mathematical expression is: $$2 \times \sqrt{\frac{\left(\frac{H11}{J11} - \left(\frac{K11}{2}\right)^2 \times \pi\right)}{\pi}}$$ D17 = A17 - B17 / 2 $E17 = H11 / (D17 \times D17 \times PI())$ The mathematical expression is: ``` H11 / (D17^2 \times \pi) F17 = (F11 - POWER (A7 - B17 - C17; 2) x PI() x E17) / (A17 x A17 x PI()) + E17 ``` The mathematical expression is: $$F11 - \frac{(A17 - B17 - C17)^2 \times \pi \times E17}{A17 \times \pi} + E17$$ $$G17 = E17 + 0.15$$ $$H17 = F17 + 0.15$$ $$I17 = 3.14 \times I11 \times I11 \times (K17 - I11 / 3)$$ $$J17 = 0.02 + POWER ((F11 + H11/2 + I17) / 4.19; 1/3)$$ The theoretical digester volume is taken as the volume below the zero line plus half the gas storage; 0.02m are added for plaster. The mathematical expression is: ``` 0.02 + \sqrt[3]{\frac{(F11 + H11/2 + I17)}{4.19}}; 4.19 is 4/3\pi L17 = 4.19 \times (K17 - 0.02) \times (K17 - 0.02) \times (K17 - 0.02) - 117 - H11 / 2 B23 = PI() \times (I11 + A23) \times (I11 + A23) \times (K17 - (I11 + A23) / 3) ``` The volume above the lowest slurry level is found by trial and error; π is expressed as PI(). ``` C23 = I17 + H11 D23 = A23 + J11 E23 = 3.14 \times I11 \times I11 \times (G23 - I11/3) F23 = 0.02 + POWER ((F11 + H11/2 + E23) / 2.09; 1/3) ``` #### The mathematical expression is: $$0.02 + \sqrt[3]{\frac{(F11 + H11/2 + F23)}{2.09}}; 2.09 \text{ is } 2/3\pi$$ $$H23 = 2.09 \times (G23 - 0.02) \times (G23 - 0.02) \times (G23 - 0.02) - E23 - H11 / 2$$ $$J23 = PI() \times (I23 + I11) \times (I23 + I11) \times (G23 - (I23 + I11) / 3)$$ The volume above the lowest slurry level is found by trial and error; π is expressed as PI(). Picture 10_10: Illustration to spreadsheet for calculation of fully mixed digester dimensions | | | В | С | - | - | F | G | | | | 17 | | |----|---|----------------------------|---------------------------------------|---|---|---|--|---------------------------------------|---|-------------------------|--|--| | 1 | А | В | C | Canaralan | E | | | H
d gas-produc | tion data | J | K | L | | 2 | daily
flow | TS (DM)
content | org. DM/
total DM | org. DM
content | solids
settleable
within
one day | HRT | lowest
digester
tempera-
ture | ideal
biogas
product
at 30°C | gas pro | duction | total gas
product | methane
content | | 3 | given | given | assumed | calcul. | tested | chosen | given | given | calcul. acc | . to graphs | calcul. | assumed | | 4 | m³/d | % | ratio | % | ml/l | d | °C | l/kg org DM | f-HRT | f-temp | m³/d | ratio | | 5 | 0.60 | 6.0 | 67% | 4.0 | 20 | 25 | 25 | 400 | 0.97 | 0.90 | 8.42 | 70% | | 6 | | | | | | | | 200 - 450 | | | | | | 7 | | | va | lues for all d | ligester shap | es | | | | for all f | ixed-dome | plants | | 8 | non-
dissolv.
methane
prod. | approx.
effluent
COD | de-
sludging
interval | sludge
volume | liquid
volume | total
digester
volume | gas
storage
capacity | gas
holder
volume
VG | free
distance
above
slurry
zero line | outlet
above
zero | dia-
meter
of left
shaft | dia-
meter of
expans.
chamber | | 9 | assumed | calcul. | chosen | calcul. | calcul. | calcul. | given | calcul. | chosen | chosen | chosen | calcul. | | 10 | ratio | mg/l | months | m³ | m³ | m³ | ratio | m³ | m | m | m | m | | 11 | 80% | 7,943 | 12 | 4.32 | 15.0 | 19.3 | 65% | 5.5 | 0.25 | 0.60 | 1.20 | 3.19 | | 12 | | | | | | | | | | minimum | 0.60 m | | | 13 | | | cyl | indrical float | ing-drum pl | ng-drum plant | | | | ball-s | shaped dige | ester | | 14 | radius of
digester | width
of water
ring | wall
thickness
of water
ring | radius
of gas
holder | theor.
height
of gas
holder | theor.
depths of
digester | actual
heigh-
of gas
holder | actual
depth of
digester | volume
of empty
space
above
zero line | radius
ball
shape | actual
digester
radius
(ball) | actual
net volu-
me of
digester | | 14 | chosen | chosen | chosen | calcul. | calcul. | calcul. | calcul. | calcul. | calcul. | requir. | chosen | check | | 16 | m | m | m | m | m | m | m | m | m³ | m | m | m³ | | 17 | 1.50 | 0.25 | 0.12 | 1.38 | 0.92 | 3.13 | 1.07 | 3.28 | 0.34 | 1.77 | 1.80 | 20.56 | | 18 | | | | | | | | | | | | | | 19 | | ball shape | d digester | | | | ŀ | nalf-ball shap | ed digester | | | | | 20 | lowest slurry level below zero line (fill in trial until "calcul." match "target") gas pressure ball shaped | | | volume
of empty
space
above
zero line | radius
half
round
shape | actual
digester
radius
(half
round) | actual net
volume
of diges-
ter | | | | gas
pressure
half-ball | | | 21 | trial!! | calcul. | target | calcul. | calcul. | requir. | chosen | check | trial!! | calcul. | target | calcul. | | 22 | m | m³ | m³ | m w.c. | m³ | m | m | m³ | m | m³ | m³ | m w.c. | | 23 | 0.90 | 5.89 | 5.81 | 1.50 | 0.43 | 2.23 | 2.25 | 20.01 | 0.74 | 5.91 | 5.90 | 1.34 | | 24 | | | | 1,50 max. | | | | | | | | 1.50 max. | Table 26: Spreadsheet for calculating fully mixed digester dimensions #### 10.2.5 Imhoff tank The general treatment properties in the Imhoff tank are comparable to those in any other settler. Since wastewater does not come into direct contact with active sludge, BOD removal from the liquid is almost zero; however, as sedimentation is greater than in other settlers, the COD or BOD removal within these units is comparable. This fact is reflected in the factor 0.50 of cell H5. Picture 10_11: Illustration to spreadsheet for calculation of Imhoff Tank dimensions # 10 Designing DEWATS Flow volume, number of peak hours of flow and pollution load are the basic entries for calculation. "Chosen" parameters are the same as those for the septic tank – HRT and desludging intervals. ## Formulas of spreadsheet "Imhoff tank" | | А | В | С | D | Е | F | G | Н | I | J | |----|-------------------------------|---|-------------------------------|--------------------------------|--------------------------------|---|--------------------------------------|------------------------|-----------------------------|---| | 1 | | | Gene | ral spreadshe | et for Imhoff | tank, input an | d treatment d | ata | | | | 2 | daily
waste-
water flow | time of
most
waste-
water flow | max. flow
at peak
hours | COD
inflow | BOD ₅
inflow | HRT inside
flow tank | settleable
SS/COD
ratio | COD
removal
rate | removal outflow | | | 3 | given | given | calcul. | given | given | chosen | given | calcul. | calcul. | calcul. | | 4 | m³/day | h | m³/h | mg/l | mg/l | h | mg/l | % | mg/l | mg/l | | 5 | 25.0 | 12 | 2,08 | 633 | 333 | 1.50 | 0.42 | 27% | 460 | 237 | | 6 | | | C | COD/BOD ₅ -> | 1.90 | domest | tic 0.35 - 0.45 | Е | 30Drem> | 1.06 | | 7 | | | | | dimensions of | f Imhoff tank | | | | | | 8 | desludging
interval | flow tank
volume | sludge
volume | inner
width of
flow tank | space be-
side flow
tank | total inner
width of
Imhoff
tank | inner
length of
Imhoff
tank | sludge
height | total
depth at
outlet | biogas
70% CH ₄
50% dis-
solved | | 9 | chosen | calcul. | calcul. | chosen | chosen | calcul. | calcul. | calcul. | calcul. | calcul. | | 10 | months | m³ | m³ | m | m | m | m | m | m | m³/d | | 11 | 12 | 3.13 | 3.61 | 1.30 | 0.55 | 2.24 | 2.82 | 0.57 | 2.28 | 1.08 | | 12 | sludge | e I/g BODrem. | 0.0042 | | | | | | | | Table 27: Spreadsheet for calculating Imhoff tank dimensions ``` C5 = A5/B5 H5 = G5 / 0.5 x IF (F5 < 1; F5 x 0.3; IF (F5 < 3; (F5 - 1) x 0.1 / 2 + 0.3; IF (F5 < 30; (F5 - 3) x 0.15 / 27 + 0.4; 0.55))) ``` The formula relates to 10 6. The number 0.5 is a correction factor based on practical experience. ``` I5 = (1 - H5) x D5 J5 = (1 - H5 x J6) x E5 E6 = D5 / E5 J6 = IF (H5 < 0.5; 1.06; IF (H5 < 0.75; (H5 - 0.5) x 0.065 / 0.25 + 1.06; IF (H5 < 0.85; 1.125 - (H5 - 0.75) x 0.1 / 0.1; 1.025))) ``` The formula relates to Picture 10 3. ``` B11 = C5 x F5 C11 = A5 x 30 x A11 x C12 x (E5 – J5) / 1000 F11 = D11 + E11 + 0.25 + 2 x 0.07 ``` All formulas for dimensions relate to the geometry of the Imhoff tank, as shown in Picture 10_11. ``` G11 = B11 / (0.3 \times D11 + (D11 \times D11 \times 0.85 / 2)) H11 = C11 / F11 / G11 I11 = H11 + 0.85 \times D11 + 0.3 + 0.3 J11 = (D5 - I5) \times A5 \times 0.35 / 1000 / 0.7 \times 0.5 350 \text{ I methane are produced from each kg COD removed.} C12 = 0.005 \times \text{IF (A11} < 36;1 - A11 \times 0.014; \text{IF (A11} < 120; 0.5 - (A11 - 36) \times 0.002;1/3))} ``` The formula relates to Picture 10_5. #### 10.2.6 Anaerobic baffled reactor Volume of flow, number of peak hours of flow and pollution load are the basic entries for calculation. "Chosen" parameters for designing a baffled reactor are the HRT, desludging intervals and the up-flow velocity (cell 117). Due to the
interrelation between these factors, the HRT cannot be reduced by changing the dimensions of the up-flow chambers because the up-flow velocity will thereby be increased. To achieve the desired effluent quality, it is better to add another chamber than to enlarge their volumes because treatment efficiency increases with the number of chambers (see formula of cell J17). However, practical experience has shown that treatment efficiency does not increase with more than six chambers. Calculation is based on the curve (Picture 10_12) showing BOD removal for a BOD of 900mg/l at 25°C. Factors are applied to adapt the calculation to waste-water strength (Picture 10_14) and temperature (Picture 10_17). An additional curve is used to prevent organic overloading (Picture 10_13). Picture 10 12: BOD removal in relation to HRT in baffled reactors Picture 10_13: BOD removal affected by organic overloading baffled reactors Picture 10_14: BOD removal in baffled reactors in relation to wastewater strength | | А | В | С | D | Е | F | G | Н | | J | K | |----|---|---|--|--|---------------------------------------|-----------------------------------|---------------------------------|---|--|--|---| | 1 | | | | | ral spreadshe | | | | | | | | 2 | daily
waste-
water flow | time of
most
waste-
water flow | max. peak
flow per
hour | COD
inflow | BOD ₅
inflow | COD/BOD
ratio | settleable
SS / COD
ratio | lowest
digester
tempera-
ture | de-
sludging
interval | HRT in
settler
(no settler
HRT=0) | COD
removal
rate in
settler | | 3 | avg. | given | max. | given | given | calcul. | given | given | chosen | chosen | calcul. | | 4 | m³/day | h | m³/h | mg/l | mg/l | ratio | mg/l | °C | months | h | % | | 5 | 25 | 12 | 2.08 | 633 | 333 | 1.90 | 0.42 | 25 | 18 | 1.50 | 23% | | 6 | | | COD/BOD ₅ -> | | | | 0.35-0.45 | | | 1.5 h | | | 7 | | | | | t | reatment data | a | | | | | | 8 | BOD ₅
removal
rate in
settler | inflov
baffled | v into
reactor | COD/
BOD ₅
ratio after
settler | | rs to calculate
rate of anaero | | COD rem.
25°, COD
1500 | theor. rem.
rate acc. to
factors | COD
rem. rate
baffle only | COD out | | 9 | calcul. | COD | BOD ₅ | calcul. | C | calculated acco | ording to graph | s | calcul. | calcul. | | | 10 | % | mg/l | mg/l | mg/l | f-overload | f-strenght | f-temp | f-HRT % | % | % | mg/l | | 11 | 24% | 489 | 253 | 1.94 | 1.00 | 0.91 | 1.00 | 87 | 79% | 81% | 94 | | 12 | 1.06 | <- COD/ BOD |) removal facto | or | | | | (| COD/BOD rem | oval factor -> | 1.025 | | 13 | | | | dimension | s of settler | | | | | ABR | | | 14 | total COD
removal
rate | total BOD ₅
removal
rate | BOD ₅
out | measureme | nasonry sludge length of settler rate | | | length of
settler | max.
upflow
velocity | number
of upflow
chambers | depth at
outlet | | 15 | calcul. | calcul. | calcul. | width | depth | calcul. | calcul. | chosen | chosen | chosen | chosen | | 16 | % | % | mg/l | m | m | I/g COD | m | m | m/h | No. | m | | 17 | 85% | 87% | 42 | 2.00 | 1.50 | 0.0037 | 2.39 | 2.40 | 1.8 | 5 | 1.50 | | 18 | | | | | | | | | 1.4-2.0m/h | | | | 19 | | | din | nensions of A | BR | | | | status and gp |) | | | 20 | should not exceed half single depth upflor | | area of
single
upflow
chamber | width of o | chambers | actual
upflow
velocity | width of
downflow
shaft | actual
volume
of baffled
reactor | actual
total HRT | org. load
(BOD ₅₎ | biogas
(ass: CH ₄
70%; 50%
dissolved) | | 21 | calcul. | chosen | calcul. | calcul. | chosen | calcul. | chosen | calcul. | calcul. | calcul. | calcul. | | 22 | m | m | m² | m | m | m/h | m | m³ | h | kg/m³*d | m³*/d | | 23 | 0.75 | 0.75 | 1.16 | 1.54 | 2.00 | 1.39 | 0.25 | 15.00 | 14 | 1.63 | 3.37 | | 24 | | | | | | | | HRT reduced | d by 5% for slu | dge | | TIP: If removal rate is insufficient; increase number of upflow chambers to keep upflow velocity low. Table 28 Spreadsheet for the calculation of anaerobic baffled reactor dimensions #### Formulas of spreadsheet "ABR" ``` C5 = A5 / B5 F5 = D5 / E5 K5 = G5 / 0.6 x IF (J5 < 1; J5 x 0.3; IF (J5 < 3; (J5 - 1) x 0.1/2 + 0.3; IF (J5 < 30; (J5 - 3) x 0,15 / 27 + 0.4;0.55))) ``` The formula relates to Picture 10_6. The number 0.6 is a correction factor based on practical experience. ``` A11 = K5 x A12 B11 = D5 x (1 - K5) C11 = E5 x (1 - A11) D11 = B11 / C11 E11 = IF (J23 < 8;1; IF (J23 < 15;1 - (J23 - 8) x 0.18 / 7; 0,82 - (J23 - 15) x 0.9 / 5)) ``` The formula relates to Picture 10_13. ``` F11 = IF (B11 < 2000; B11 × 0.17 / 2000 + 0.87; IF (B11 < 3000; (B11 - 2000) × 0.02 / 1000 + 1.04; 1.06)) ``` The formula relates to Picture 10_14. ``` G11 = IF \; (H5 < 20; \; (H5 - 10) \times 0.39 \; / \; 20 \; + \; 0.47; \; IF \; (H5 < 25; \; (H5 - 20) \times 0.14 \; /5 \; + \; 0.86; \\ IF (H5 < 30; (H5 - 25) \times 0.08 / 5 + 1; 1.1))) ``` The formula relates to Picture 10_17. ``` H11 = IF(I23 < 5; I23 x 0.51 / 5; IF (I23 < 10; (I23 - 5) x 0.31 /5 + 0.51; IF (I23 < 20; (I23 - 10) x 0.13 / 10 + 0.82; 0.95))) ``` The formula relates to Picture 10 12. ``` J11 = IF (J17 < 7; E11 \times F11 \times G11 \times H11 \times (J17 \times 0.04 + 0.82); E11 \times F11 \times G11 \times H11 \times 0.98) ``` The formula considers improved treatment by increasing the number of chambers and limiting the treatment efficiency to 98%. ``` K11 = (1 - J11) x B11 A12 = IF (K5 < 0.5; 1.06; IF (K5 < 0.75; (K5 - 0.5) x 0.065 / 0.25 + 1.06; IF (K5 < 0.85; 1.125 - (K5 - 0.75) x 0.1 / 0.1; 1.025))) ``` The formula relates to Picture 10_3. K12 = IF (A17 < 0.5; 1.06; IF (A17 < 0.75; (A17 - 0.5) × 0.065 / 0.25 + 1.06; IF (A17 < 0.85; 1.125 - (A17 - 0.75) × 0.1 /0.1; 1.025))) The formula relates to Picture 10 3. A17=1-K11/D5 B17=A17xK12 C17=(1-B17)xE5 F17=0.005x|F(|5<36;1-|5x0.014;|F(|5<120;0.5-(|5-36)x0.002;1/3)) The formula relates to Picture 10 5. G17 = IF (A11 > 0; IF (F17 x (E5 - C11) / 1000 x 30 x I5 x A5 + J5 x C5 < 2 x J5 x C5; 2 x J5 x C5; F17 x (E5 - C11) / 1000 x 30 x I5 x A5 + J5 x C5); 0) / D17 / E17 The formula considers that sludge volume is less than half of the total volume: a settler may be omitted. A23 = K17 x 0.5 C23 = C5 / l17 D23 = C23 / B23 F23 = C5 / B23 / E23 H23 = (G23 + B23) x J17 x K17 x E23 l23 = H23 / (A5 / 24) / 105% J23 = B11 x C5 x 24 / H23 / 1000 K23 = (D5 - K11) x A5 x 0.35 / 1000 / 0.7 x 0.5 350l methane are produced from each kg COD removed. #### 10.2.7 Anaerobic filter Volume of flow and pollution load are the basic entries for calculation. The "chosen" parameters for the anaerobic filter are the hydraulic retention time and desludging intervals. The calculation of performance is based on a curve, which describes the relation between hydraulic retention time and percentage of COD removal. The curve (Picture 10_16) is based on a COD of 1500mg/l at 25°C. The values are then multiplied by factors reflecting temperature (Picture 10_17), wastewater strength (Picture 10_18) and specific-filter surface (Picture 10_19). Picture 10_17: COD removal in relation to temperature in anaerobic reactors The void space of the filter medium influences the digester volume required to provide sufficient hydraulic retention time. Gravel has approximately 35% void space, while specially manufactured plastic pieces may have over 90%. When filter height is increased together with total water depth, the impact of increased depth on HRT is less with gravel than with plastic pieces. While filter height remains the same, the distance from filter bottom to digester floor must be increased. Picture 10_18: COD removal relative to wastewater strength in anaerobic filters Picture 10_19: Spreadsheet for calculating anaerobicfilter dimensions | | А | В | С | D | Е | F | G | Н | 1 | J | К | L | |----|----------------------------------|---|--|-------------------------------------|--|---|---|-----------------------------|--------------------------------------|-----------------------------------|---|--| | 1 | | | | | | | er (AF) with i | | ptic tank (ST | | | | | 2 | daily
waste
water
flow | time of
most
waste
water
flow | max.
peak flow
per hour | COD | BOD ₅
inflow | SS _{settl./}
COD ratio | lowest
digester
tempera-
ture | HRT in
septic
tank | de-
sludging
interval | COD-
removal
septic
tank | BOD ₅
removal
septic
tank | BOD/
COD-
removal
factor | | 3 | given | given | calcul. | given | given | given | given | chosen | chosen | calcul. | calcul. | calcul. | | 4 | m³/day | h | m³/h | mg/l | mg/l | mg/l | °C | h | month | % | % | ratio | | 5 | 25.0 | 12 | 2.08 | 633 | 333 | 0.42 | 25 | 2 | 36 | 25% | 26% | 1,06 | | 6 | | CC | DD/BOD ₅ -> | 1.90 | 0,35 - 0.45 | (domestic) | | 2h | | | BOD _{rem} | -> 1.06 | | 7 | treatment data | | | | | | | | | | | | | 8 | COD
inflow in
AF | BOD ₅
inflow
into AF | specific
surface
of filter
medium | voids
in filter
mass | HRT
inside AF
reactor | factor | s to calculate
of anaero | | COD-
removal
rate
(AF only) | COD
outflow
of AF | COD-
removal
rate of
total
system | | | 9 | calcul. | calcul. | given | given | chosen | Ca | alculated acco | rding to grapl | ns | calcul. | calcul. | calcul. | | 10
| mg/l | mg/l | m²/m³ | % | h | f-temp | f-strength | f-surface | f-HRT | % | mg/l | % | | 11 | 478 | 247 | 100 | 35% | 30 | 1,00 | 0,91 | 1,00 | 69% | 70 | 142 | 78% | | 12 | | | 80 - 120 | 30 - 45 | 24 - 48 h | | | | | | | | | 13 | | | | | | dimensions | of septic tank | (| | | | | | 14 | BOD/
COD
removal
factor | BOD ₅
rem. rate
of total
system | BOD ₅
outflow
of AF | inner
width of
septic
tank | min. wa-
ter depth
at inlet
point | | gth of first
mber | length of second
chamber | | sludge
accum. | volume
incl.
sludge | actual
volume
of septic
tank | | 15 | calcul. | calcul. | calcul. | chosen | chosen | calcul. | chosen | calcul. | chosen | calcul. | requir. | calcul. | | 16 | ratio | % | mg/l | m | m | m | m | m | m | l/kg BOD | m³ | m³ | | 17 | 1.10 | 85 | 49 | 1.75 | 2.25 | 1,69 | 1.70 | 0.85 | 0.85 | 0,00 | 10.00 | 10.04 | | 18 | | | | | | | | | | | sludge l | /g BODrem. | | 19 | | | dimensi | on of an aer | obic filter | | | bio | gas product | ion | che | eck! | | 20 | volume
of filter
tanks | depth of
filtertanks | length
of each
tank | number
of filter
tanks | width
of filter
tanks | space
below
perfora-
ted slabs | filter high
(top 40cm
below
water-
level) | out of
septic
tank | out of
anaerobic
filter | total | org. load
on filter
volume
COD | max.
up-flow
velocity
inside
filter
voids | | 21 | calcul. | chosen | calcul. | chosen | requir. | chosen | calcul. | assump.: 7 | 70% CH ₄ : 50° | % dissolved | calcul. | calcul. | | 22 | m³ | m | m | No. | m | m | m | m³/d | m³/d | m³/d | kg/m³*d | m/h | | 23 | 31.25 | 2.25 | 2.25 | 3 | 2.69 | 0.60 | 1.20 | 0.97 | 2.10 | 3.07 | 1.57 | 0.98 | | 24 | | | | max.!! | | | | | | | < 4.5 | <2.0 | Table 29: Spreadsheet for calculating anaerobic-filter dimensions Formulas of spreadsheet "anaerobic filter" ``` C5 = A5 / B5 J5 = F5 / 0.6 \times IF (H5 < 1; H5 \times 0.3; IF (H5 < 3; (H5 - 1) \times 0.1 / 2 + 0.3; IF(H5 < 30; (H5 - 3) \times 0.15 / 27 + 0.4; 0.55))) ``` The formula relates to Picture 10 6. The number 0.6 is a correction factor based on practical experience. ``` K5 = L5 \times J5 L5 = IF (J5 < 0.5; 1.06; IF (J5 < 0.75; (J5 - 0.5) \times 0.065 / 0.25 + 1.06; IF (J5 < 0.85; 1.125 - (J5 - 0.75) x 0.1/0.1; 1.025))) ``` The formula relates to Picture 10_3. ``` D6 = D5 / E5 A11 = D5 \times (1 - J5) B11 = E5 \times (1 - K5) F11 = IF (G5 < 20; (G5 - 10) \times 0.39 / 20 + 0.47; IF (G5 < 25; (G5 - 20) \times 0.14 / 5 + 0.86; IF (G5 < 30; (G5 - 25) \times 0.08 / 5 + 1; 1.1)) ``` The formula relates to Picture 10_17. ``` G11 = IF (A11 < 2000; A11 \times 0.17 / 2000 + 0.87; IF (A11 < 3000; (A11 - 2000) \times 0.02 / 1000 + 1.04; 1.06)) ``` The formula relates to Picture 10_18. ``` H11 = IF (C11 < 100; (C11 - 50) \times 0.1 / 50 + 0.9; IF (C11 < 200; (C11 - 100) \times 0.06 / 100 + 1; 1.06)) ``` The formula relates to Picture 10 19. ``` I11 = IF (E11 < 12; E11 \times 0.16 / 12 + 0.44; IF (E11 < 24; (E11 - 12) \times 0.07 / 12 + 0.6; |F(E11 < 33; (E11 - 24) \times 0.03 / 9 + 0.67; |F(E11 < 100; (E11 - 33) \times 0.09 / 67 + 0.7; 0.78)))) ``` The formula relates to Picture 10_16. ``` J11 = IF (F11 x G11 x H11 x I11 x (1 + (D23 x 0.04)) < 0.98; F11 x G11 x H11 x I11 x (1 + (D23 x 0.04)); 0.98) ``` The formula considers improved treatment by increasing the number of chambers and limiting the treatment efficiency to 98%. ``` K11 = A11 x (1 - J11) L11 = (1 - K11 / D5) A17 = IF (L11 < 0.5; 1.06; IF (L11 < 0.75; (L11 - 0.5) x 0.065 / 0.25 + 1.06; IF(L11 < 0.85; 1.125 - (L11 - 0.75) x 0.1 / 0.1; 1.025))) ``` The formula relates to Picture 10_3. ``` B17 = L11 x A17 C17 = (1 - B17) x E5 F17 = 2/3 x K17 / D17 / E17 H17 = F17 / 2 J17 = 0.005 x IF (I5 < 36;1 - I5 x 0.014; IF (I5 < 120; 0.5 - (I5 - 36) x 0.002; 1/3)) ``` The formula relates to Picture 10_5. ``` K17 = IF (OR (K5 > 0; J5 > 0); IF(J17 \times (E5 - B11) / 1000 \times I5 \times 30 \times A5 + H5 \times C5 < 2 \times H5 \times C5; \\ 2 \times H5 \times C5; J17 \times (E5 - B11) / 1000 \times I5 \times 30 \times A5 + H5 \times C5); 0) ``` The formula considers that the sludge volume is less than half of the total volume; a settler may be omitted. $$L17 = (G17 + I17) \times E17 \times D17$$ $A23 = E11 \times A5 / 24$ C23 = B23 $E23 = A23 / D23 / ((B23 \times 0.25) + (C23 \times (B23 - G23 \times (1 - D11))))$ G23 = B23 - F23 - 0.4 - 0.05 $H23 = (D5 - A11) \times A5 \times 0.35 / 1000 / 0.7 \times 0.5$ 350l methane are produced from each kg COD removed. $$123 = (A11 - K11) \times A5 \times 0.35 / 1000 / 0.7 \times 0.5$$ 350l methane are produced from each kg COD removed. J23= SUM (H23 : I23) K23 = A11 x A5 / 1000 / (G23 x E23 x C23 x D11 x D23) $L23 = C5 / (E23 \times C23 \times D11)$ Picture 10_20: Illustration to spreadsheet for calculating anaerobicfilter #### 10.2.8 Horizontal gravel filter Average flow and pollution load are the basic entries for calculation. The "chosen" parameter for the design of gravel filters is the desired effluent quality (BODout, cell E5). The hydraulic retention time and temperature have the greatest influence on treatment performance. The HRT depends on the desired BOD-removal rate (Picture 10_22); the curve is based on 25°C and 35% pore space. The pore space inside the filter defines the "real" HRT, also influenced by the type and number of plants chosen. Further influencing factors are close to 1.0; the information needed to define these factors probably not available at the site anyway. In practice, the limiting factors are the organic load and the hydraulic load. The limit for hydraulic loading is approximately 100l/m² or 0.1m, although this value can be much higher when using coarse-filter media with guaranteed conductivity. A horizontal filter should not receive more than 10g BOD/(m²xd) because oxygen supply via the surface is limited; this value is only half of the limit for aerobic ponds. This is because a gravel filter works more like a plug flow system; the organic load is much higher in the front section compared to the rear, while oxygen supply is also inferior in the lower part. As a result, the cross-sectional area at the inflow side is influenced by organic loading (cell E12). Picture 10_21: HRT relative to temperature in gravel filters, based on 90% BOD-removal Picture 10 22: Influence of desired **BOD** removal rates on HRT of gravel filters, based on 35% pore space at 25°C #### Formulas of spreadsheet "gravel filter" ``` D5 = B5 / C5 F5 = 1 - E5 / C5 G5 = F5 / G6 H5 = B5 \times (1-G5) J5 = IF (F5 < 0.4); (F5 \times 0.22) / 0.4); IF (F5 < 0.75; (F5 - 0.4) \times 31 / 35 + 0.22; IF (F5 < 0.8; (F5 - 0.75) \times 9.5 / 5 + 0.605; IF (F5 < 0.85; (F5 - 0.8) \times 12.5 / 5 + 0.7; IF (F5 < 0.9; (F5 - 0.85) \times 17.5 / 5 + 0.825; (F5 - 0.9) \times 30 / 5 + 1))))) ``` The formula refers to Picture 10_22. ``` K5 = J5 \times IF (I5 < 15;82 - (I5 - 10) \times 37 / 5; IF (I5 < 20; 45 - (I5 - 15) \times 31 / 5; IF (I5 < 25; 24 - (I5 - 20) x 11 / 5; IF (I5 < 30; 13 - (I5 - 25) x 6 / 5; 7)))) ``` The formula refers to Picture 10_21. ``` G6 = IF (F5 < 0.5; 1.06; IF (F5 < 0.75; (F5 -0.5) \times 0.065 / 0.25 + 1.06; IF(F5<0.85;1.125-(F5-0.75)x0.1/0.1;1.025))) ``` The formula refers to Picture 10_3. ``` L6 = L5 / 86400 A11 = K5 x 35% D11 = IF (A5 / L5 / B11 < A5 x C5 / E12; A5 x C5 / E12; A5 / L5 / B11) ``` The formula compares hydraulic load to maximum organic load in cell E12. ``` E11 = D11 / C11 F11 = IF (A5 x C5 /L12 > A5 x K5 / C11; A5 x C5 /L12; A5 x K5 / C11) ``` The formula compares permitted hydraulic load with organic load in cell L12. ``` G11 = F11 / E11 J11 = H11 x I11 K11 = A5 / J11 L11 = K11 x C5 H12 = E11 ``` Picture 10_23: Illustration to spreadsheet for calculating dimensions horizontal gravel filter # 10 Designing DEWATS | | А | В | С | D | Е | F | G | Н | I | J | K | L | |----|---------------------------------------|-----------------|--------------------------------|--------------------------|-----------------------------|-------------------------------------|------------------------------|-----------------|-------------------------|-------------------------------------|---------------------------------------|--------------------------------------| | 1 | | | | General spi | readsheet fo | r planted gra | avel filter, in | put and trea | tment data | | | | | 2 | average
flow | COD in | BOD ₅ in | COD/
BOD
ratio | outflow
BOD ₅ | BOD ₅
removal
rate | COD
removal | COD out | min.
annual
Temp. | HRT
factor
acc. to
k20=0.3 | HRT | hydraulic
conduct.
Ks | | 3 | given | given | given | calcul. | wanted | calcul. | calcul. | calcul. | given | calcul. via | calcul. | given | | 4 | m³/d | mg/l | mg/l | mg/l | mg/l | % | % | mg/l | °C | graph | days | m/d | | 5 | 26 | 410 | 215 | 1.91 | 30 | 86% | 84 | 66 | 25 | 0.86 | 11.20 | 200 | | 6 | COD/ BOD rem. factor via graph -> 1.0 | | | | | | 1.025 | | | K | 2.31E -
0.3 | | | 7 | | | | dimer | nsions | | | | | results | | | | 8 | HRT in
35%
pore
space | bottom
slope | depth of
filter at
inlet | cross
section
area | width
of filter
basin | surface
area
required | length
of filter
basin | chosen
width | lenght
chosen | actual
surface
area
chosen | hydr.
load on
chosen
surface | org.
load on
chosen
surface | | 9 | calcul. | chosen | chosen | calcul. | calcul. | calcul. | calcul. | chosen | chosen | check! | calcul. | calcul. | | 10 | days | % | m | m² | m | m² | m | m | m | m² | m/d | g/m² BOD | | 11 | 3.92 | 1.0% | 0.60 | 37.27 | 62.1 | 559 | 9.0 | 62.5 | 9.0 | 563 | 0.046 | 9.9 | | | ^ infor | mation only | 0.3 - 0.6 m | max | BOD ₅ 150 g | g/m² | always | -> 62.1 | ma | x. loads => | 0.100 | 10 | Table 30: Spreadsheet for calculating dimensions horizontal gravel filters #### 10.2.9 Anaerobic pond Anaerobic ponds should be built for sedimentation purposes only, as highly
loaded ponds with very short retention times and heavy scum formation on the surface – or as relatively low-loaded ponds which are almost odourless because of neutral pH values. The spreadsheet may be used for all three categories. The hydraulic retention time is, therefore, the "chosen" parameter. Ponds with long retention times (low organic loading rates) may be divided into several ponds in series. For ponds with short retention times, the front section can be separated to support development of scum. The choice of HRT strongly influences the organic load of the effluent. Ambient temperature is important and an excessively high temperature should not be chosen for want of smaller ponds. It is assumed that temperature has no influence on COD removal at short retention times of less than 30 hours. Cell G11 should be observed and compared with F11 when the pond is near residential houses. The biogas potential is also calculated to decide whether a closed anaerobic tank with biogas collection should be built instead. Picture 10_24: Influence of HRT on COD removal of non-settled solids in anaerobic ponds Picture 10_25: Influence of HRT on COD removal of settled solids in anaerobic ponds Picture 10_26: Illustration to spreadsheet for calculating dimensions of anaerobic ponds (figures of Table 31) Formulas of spreadsheet "anaerobic and sedimentation pond" ``` D5 = B5 / C5 H5 = IF (E5 < 1; F5 / 0.6x (0.3 x E5); IF (E5 < 3; F5 / 0.6 x (E5 - 1) x 0.1 / 2; IF (E5 < 30; F5 / 0.6 x (E5 - 3) x 0.15 / 27 + 0.4); IF(E5 < 120; E5 x 0.5 x (1 - 0.55 x F5 / 0.6) / 120 + 0.55 x F5 / 0.6; IF (E5 < 240; (E5 - 120) x 0.25 x (1 - 0.55 x F5 / 0.6) / 120 + 0.5 x (1 - 0.55 x F5 / 0.6) + 0.55 x F5 / 0.6; IF (E5 < 480; (E5 - 240) x 0.19 x (1 - 0.55 x F5 / 0.6) / 240 + 0.55 x F5 / 0.6 + 0.75 x (10.55 x F5 / 0.6); (E5 - 480) x 0.06 x (1 - 0.55 x F5 / 0.6) / 240 + 0.55 x F5 / 0.6 + 0.94 x (1 - 0.55 x F5 / 0.6))))))) ``` The formula refers to Picture 10_24 and Picture 10_25. Below 30 hours HRT, COD removal is influenced by settling properties (F5/0.6); longer retention times also influence non-settled solids. ``` I5 = IF (E5 < 30; 1; IF (G5 < 20; (G5 - 10) × 0.39 / 20 + 0.47; IF(G5<25; (G5 - 20) × 0.14 / 5 + 0.86; IF(G5 < 30; (G5 - 25) × 0.08 / 5 + 1; 1.1)))) ``` The formula refers to Picture 10_17. COD removal by sedimentation (HRT <30 hours) is not influenced by temperature. ``` J5 = IF (E5 < 24; 1; IF (F17 = 1;1; IF (F17 = 2; 1.08; IF (F17 = 3; 1.12; 1.13)))) A11 = IF (H5 x I5 x J5 < 0.98; H5 x I5 x J5; 0.98) B11 = IF (A11 < 0.5; 1.06; IF (A11 < 0.75; (A11 - 0.5) x 0.065 / 0.25 + 1.06; IF (A11 < 0.85; 1.125 - (A11 - 0.75) x 0.1 / 0.1; 1.025))) ``` The formula refers to Picture 10 3. ``` C11 = A11 / B11 D11 = B5 - (C11 x B5) E11 = C5 - (A11 x C5) F11 = A5 x C5 / (A17 + J11) G11 = 75% x IF (G5 < 10; 100; IF (G5 < 20; G5 x 20 - 100; IF(G5 < 25; G5 x 10 + 100; 350))) ``` The formula refers to the rule of thumb by Mara, reflected in Table 22. ``` I11 = 0.005 x IF (H11 < 36; 1 - H11 x 0.014; IF (H11 < 120; 0.5 - (H11 - 36) x 0.002; 1/3)) ``` The formula refers to Picture 10 5. ``` J11 = 30 x A5 x (C5 - E11) x I11 x H11 / 1000 A17 = A5 / 24 x E5 C17 = (J11 + A17) / B17 E17 = C17 / D17 G17 = E17 / F17 J17 = A5 x (B5 - D11) x 0.35 / 1000 / H17 x I17 ``` The formula assumes 350l methane production per kg COD removed. | | А | В | С | D | Е | F | G | Н | I | J | | |----|---|--------------------|------------------------|--------------------------|----------------------------|--|------------------------------------|----------------------------------|--------------------------------------|---------------------------------|--| | 1 | General spreadsheet for anaerobic and sedimentation ponds | | | | | | | | | | | | 2 | daily flow | COD in | BOD ₅ in | COD/
BOD ₅ | HRT | settleable
SS/COD
ratio | ambient
temp. °C | BOD ₅ removal factors | | | | | 3 | given | given | given | calcul. | chosen | given | given | calcul | ated acc. to g | raphs | | | 4 | m³/day | mg/l | mg/l | ratio | h | mg/l | °C | f-HRT | f-temp | f-number | | | 5 | 260 | 2000 | 850 | 2.35 | 72 | 0.42 | 25 | 57% | 100% | 100 % | | | 6 | domestic -> 0.35 - 0.45 | | | | | | | | | | | | 7 | | | | | treatm | ent data | | | | | | | 8 | BOD ₅
removal
rate | BOD/COD
removal | COD
removal
rate | COD out | BOD ₅ out | org. load
BOD ₅ on
total vol. | odourless
limit of
org. load | deslud-
ging
interval | sludge
accum. | sludge
volume | | | 9 | calcul. chosen | calcul. | calcul. | | | 10 | % | factor | % | mg/l | mg/l | g/m³*d | g/m³*d | months | I/g BOD | m³ | | | 11 | 57 | 1.08 | 53 | 943 | 366 | 171 | 263 | 60 | 0.0023 | 512 | | | 12 | | | | | | | | | | | | | 13 | | | | dimensions | | | | bi | iogas potentia | al | | | 14 | water
volume | depth of
pond | total area
of pond | width of
ponds | total
length of
pond | number of ponds | length of
each pond
if equal | methan
content | non-
dissolv.
methane
prod. | potential
biogas
product. | | | 15 | calcul. | chosen | required | chosen | calcul. | chosen | calcul. | assumed | assumed | calcul. | | | 16 | m³ | m | m² | m | m | number | m | ratio | ratio | m³/d | | | 17 | 780 | 2.0 | 646 | 6.00 | 107.67 | 1 | 107.67 | 70% | 50% | 68.67 | | | 18 | | | | | | | | | | | | ## Table 31: Spreadsheet for calculating dimensions for anaerobic sedimentation pond (with short HRT). In the example, the pond is extremely long and narrow to facilitate the development of scum in the highly loaded front portion. A baffle wall in the front third supports the effect. If the pond was squarer, there would be no highly loaded areas, but also no sealing-scum layer. Both options are possible. | | А | В | С | D | Е | F | G | Н | 1 | J | | |----|---|--------------------|------------------------|--------------------------|----------------------------|--|------------------------------------|----------------------------------|--------------------------------------|---------------------------------|--| | 1 | General spreadsheet for anaerobic and sedimentation ponds | | | | | | | | | | | | 2 | daily flow | COD in | BOD ₅ in | COD/
BOD ₅ | HRT | settleable
SS/COD
ratio | ambient
temp. °C | BOD ₅ removal factors | | | | | 3 | given | given | given | calcul. | chosen | given | given | calcu | lated acc. to g | raphs | | | 4 | m³/day | mg/l | mg/l | ratio | h | mg/l | °C | f-HRT | f-temp | f-number | | | 5 | 260 | 2000 | 850 | 2.35 | 480 | 0.42 | 25 | 92% | 100% | 108 % | | | 6 | domestic -> 0.35 - 0.45 | | | | | | | | | | | | 7 | | | | | treatm | ent data | | | | | | | 8 | BOD ₅
removal
rate | BOD/COD
removal | COD
removal
rate | COD out | BOD ₅ out | org. load
BOD ₅ on
total vol. | odourless
limit of
org. load | desludging
interval | sludge
accum. | sludge
volume | | | 9 | calcul. chosen | calcul. | calcul. | | | 10 | % | factor | % | mg/l | mg/l | g/m³*d | g/m³*d | months | I/g BOD | m³ | | | 11 | 98% | 1.03 | 96 | 88 | 17 | 36 | 263 | 60 | 0.0023 | 881 | | | 12 | | | | | | | | | | | | | 13 | | | | dimensions | | | | b | iogas potentia | al | | | 14 | water
volume | depth of
pond | total area
of pond | width of
ponds | total
length of
pond | number of ponds | length of
each pond
if equal | methane
content | non-
dissolv.
methane
prod. | potential
biogas
product. | | | 15 | calcul. | chosen | required | chosen | calcul. | chosen | calcul. | assumed | assumed | calcul. | | | 16 | m³ | m | m² | m | m | number | m | ratio | ratio | m³/d | | | 17 | 5.200 | 2.5 | 2.432 | 20.00 | 212.62 | 2 | 60.81 | 70% | 50% | 124.29 | | | 18 | | | | | | | | | | | | Table 32: Spreadsheet is the same as Table 31, but is used to calculate dimensions of anaerobic-fermentation pond with **long HRT** # 10 Designing DEWATS # 10.2.10 Aerobic pond Volume of flow and pollution load are the basic entries for calculation. Key "chosen" parameter is the desired effluent quality (BODout, cell F5). The HRT required to achieve a certain BOD-removal rate depends on the temperature. The curve (Picture 10_29) shows this relationship for a 90% BOD-removal rate. Picture 10_28 shows how HRT changes with altering treatment performance, defined as BOD-removal rate at 25°C. Sludge production may be high in aerobic ponds, due to dead algae sinking to the bottom. According to Suwarnarat 1.44g TS can be expected from 1g BOD $_5$. Assuming a 20% total-solids content in compressed bottom sludge and a 50% reduction of volume due to anaerobic stabilisation, almost 4mm of bottom sludge per gram BOD $_5/m^2\times$ d organic load would accumulate during one year. At loading rates of 15g BOD $_5/m^2\times$ d, approximately 6cm of sludge is expected per year. Since the surface area plays the major role for dimensioning, the sludge volume has been neglected in the calculation. Picture 10_27: Maximum organic load in relation to temperature for aerobic-facultative oxidation ponds; the influence of sunshine hours has been included Picture 10_28 Influence of desired BOD removal on HRT in aerobicfacultative ponds, based on 25°C Picture 10_29: Influence of temperature on BOD removal in aerobicfacultative ponds, based on desired BOD removal of 90% Formulas of spreadsheet for calculation of "aerobic pond" ``` D5 = B5 / C5 G5 = 1 - (F5 / C5) H5 = G5 \times 1 / IF (G5 < 0.5; 1.06; IF (G5 < 0.75; (G5 - 0.5) \times 0.065 / 0.25 + 1.06; IF (G5 < 0.85; 1.125 - (G5 - 0.75) x 0.1 / 0.1; 1.025))) ``` The formula refers to Picture 10 3. ``` I5 = B5 - H5 x B5 J5 = IF (G5 < 0.8; (G5 - 0.7) \times 0.05 / 0.1 + 0.37; IF (G5 < 0.9; (G5 - 0.8) \times 0.54 / 0.1 + 0.46; (G5 - 0.9) \times 0.48 / 0.05 + 1)) ``` The formula refers to Picture 10 28. ``` K5 = J5 \times IF (E5 < 15; 39 - (E5 -
10) \times 10 / 5; IF (E5 < 20; 29 - (E5 - 15) \times 7/5; IF (E5 < 25; 22 - (E5 - 20) x 6 / 5; IF (E5 < 30; 16 - (E5 - 25) x 4 / 5; 12)))) ``` The formula refers to Picture 10 29. ``` A11 = 30 \times A5 \times (C5 - F5) \times A12 \times L5 / 1000 B11 = IF (E5 < 17; (E5 - 10) \times 7.5 / 7.5 + 7.5; (E5 - 17) \times 23 / 13 + 14) ``` The formula refers to Picture 10 27. ``` C11 = A5 \times C5 / (F11 \times G11 \times H11) E11 = IF (IF (F11 = 1; 1; IF (F11 = 2; 1 / 1.1; IF (F11 = 3; 1 / 1.14; 1 / 1.16))) \times (A11 + A5 \times K5) / D11 > C5 \times A5 / B11; IF <math>(F11 = 1; 1; 1) IF (F11 = 2; 1 / 1.1; IF (F11 = 3; 1 / 1; 14; 1/1.16))) x (A11 + A5 x K5) / D11; C5 x A5 / B11) ``` The first part of the formula considers the influence of dividing the total pond area into several ponds. The second part compares permitted organic load with calculated HRT. ``` H11 = E11 / F11 / G11 I11 = A5 / D11 K11 = I11 / J11 L11 = I11 + F11 x E11 A12 = 0.0075 \times IF (L5 < 36; 1 - L5 \times 0.014; IF (L5 < 120; 0.5 - (L5 - 36) \times 0.002; 1 / 3)) ``` Picture 10_30: Illustration to spreadsheet for the calculation of dimensions of aerobic-facultative ponds | | А | В | С | D | Е | F | G | Н | I | J | К | L | |----|----------------------------|--|---|--------------------------|------------------------|----------------------------------|-------------------|----------------------------|---------------------------|--|-----------------------------|-----------------------------| | 1 | | | G | eneral sprea | dsheet on a | erobic-facul | tative ponds | , input and | treatment da | nta | | | | 2 | daily
flow | COD in | BOD ₅ in | COD/
BOD ₅ | min.
water
temp. | BOD ₅ out
(wanted) | BOD
removal | COD
removal | COD out | BOD ₅
removal
factor for
HRT | HRT | de-
sludging
interval | | 3 | given | given | calcul. | calcul. | given | chosen | calcul. | calcul. | calcul. | calcul. | calcul. | chosen | | 4 | m³/d | mg/l | mg/l | mg/l | °C | mg/l | % | % | mg/l | % | days | months | | 5 | 20 | 500 | 170 | 2.94 | 20 | 30 | 82 | 78 | 108 | 0.59 | 12.9 | 12 | | 6 | | | | | | | | | | 0.05 - 1.0 | | | | 7 | | | dimensi | ions of aerob | oic-facultativ | e ponds | | | polishi | ng pond 1 d | ay HRT | total | | 8 | accum.
sludge
volume | permit
org.
load
BOD ₅ | actual
org. load
(BOD ₅₎ | depth of ponds | total
pond
area | number
of main
ponds | width of
ponds | length
of each
ponds | area of
polish
pond | width of
polish
pond | length
of polish
pond | area of
all ponds | | 9 | calcul. | calcul. | calcul. | chosen | calcul. | chosen | chosen | calcul. | calcul. | chosen | calcul. | calcul. | | 10 | m³ | g/m²*d | g/m²*d | m | m² | No | m | m | m² | m | m | m² | | 11 | 6.3 | 19.3 | 13.2 | 0.9 | 258 | 3 | 9.00 | 9.55 | 22 | 5.00 | 4.44 | 796 | | 12 | 0.00624 | I/g BOD | | 0.9 - 1.2 m | | | | | | | | | Table 33: Spreadsheet for calculating dimensions of aerobic-facultative ponds # 10 Designing DEWATS #### 10.3 Spreadsheets for costings #### General background This chapter helps the reader to produce his or her own tool for calculating annual DEWATS costs. Since economic calculations always incorporate the unknown future, they are never exact. However, it would be reckless to invest in DEWATS without prior economic evaluation. The spreadsheet helps one to calculate annual expenditure, including capital costs, operational costs and maintenance. Expected income from biogas or the sale of sludge for fertiliser may be deducted. To use the spreadsheet, the following data must be collected: - planning costs, including transport to site and laboratory costs for initial wastewater analysis - · investment costs of buildings, site work and equipment - assumed maintenance and operating costs - rate of interest (minus inflation rate) - wastewater data to calculate possible benefits and to compare cost per amount of treated wastewater # Formulas of spreadsheet "annual costs of DEWATS" ``` D5 = SUM (A5 : C5) I5 = SUM (D5 : H5) J5 = SUM (G9 : K9) + E13 - J13 K5 = SUM (H9 : K9) + E13 - J13 F9 = 1 + E9 G9 = E5 x E9 H9 = (F5 + D5) x (POWER (F9; 20)) x (F9 - 1) / (POWER (F9; 20) -1) ``` This and the following formulas are financial standard operations; the mathematcal expression is: ``` 19 = G5 \times (POWER (F9; 10)) \times (F9 - 1) / (POWER (F9; 10) - 1) ``` The mathematical expression is: ``` J9 = H5 \times (POWER (F9; 6)) \times (F9 - 1) / (POWER (F9; 6) - 1) ``` The mathematical expression is: ``` K9 = SUM (G9 : J9) + E13 - J13 E13 = A13 + B13 + C13 + D13 F13 = A9 \times (B9 -D9) \times 0.35 \times 0.5 / 0.7 / 1000 ``` The formula assumes 350l produced biogas per kg COD removed. ``` H13 = F13 x 70% x G13 x 0.85 x 360 J13 = H13 + I13 ``` | 1 | Calculating of annual costs of DEWATS | | | | | | | | | | | |----|--|---|---|---|---|--|---|---|--|---|--| | 2 | plan | ning and site | supervision | cost | | iı | total annual cost | | | | | | | А | В | С | D | Е | F | G | Н | 1 | J | K | | 3 | salaries
for
planning
and super-
vision | transport
and
allowance
for
visiting or
staying at
site | cost for
waste-
water
analysis | total planning cost includ. overheads and acquisition | cost of
plot incl.
site
prepara-
tion | main
structures
of 20 years'
durability | secondary
structures
of 10 years'
durability | equipment
and parts
of 6 years'
durability | total in-
vestment
cost (incl.
land and
planning) | total an-
nual cost
(including
land) | total
annual
cost
(excluding
land) | | 4 | I.c. | l.c. | I.c. | I.c. | I.c. | I.c. | l.c. | I.c. | l.c. | l.c. | I.c. | | 5 | 1,200 | 650 | 500 | 2,350 | 150,000 | 295,000 | 9,000 | 3,000 | 459,350 | 74,359 | 62,359 | | 6 | | wastwa | ter data | | | | | | | | | | 7 | daily
waste-
water flow | strength
of
waste-
water
inflow | COD/
BOD ratio
of inflow | strength of
waste-
water
outflow | rate of
interest
in % p.a.
(bank rate
minus
inflation) | interest
factor
q=1+i | on
investment
for land | on main
structures
of 20 years'
lifetime
(incl. plan-
ning fees) | on secon-
dary
structures
of 10 years'
lifetime | on
equip-
ment of
6 years'
lifetime | total
capital
costs | | 8 | m³/d | mg/I COD | mg/l | mg/I COD | % | | I.c./year | I.c./year | I.c./year | I.c./year | I.c./year | | 9 | 20 | 3,000 | 2 | 450 | 8% | 1.08 | 12,000 | 30,286 | 1,341 | 649 | 37,179 | | 10 | | O | perational co | st | | | explanat. | | | | | | 11 | cost of
personal
for
operation,
mainten.
and repair | cost of
material
for
operation,
mainten.
and repair | cost of
power
(e.g. cost
for
pumping) | cost of
treatment
additives
(e.g.
chlorine) | total
operatio-
nal cost | daily
biogas
production
(70% CH ₄ ,
50%
dissolved) | price 1
litre of
kerosene
(1m³
CH ₄ =0.85 I
kerosene) | annual
income
from
biogas
p.a. | other
annual
income or
savings
(e.g. fertili-
ser, fees)) | total
income
per
annum | l.c. = local
currency;
mg/l = g/m³ | | 12 | I.c./year | I.c./year | I.c./year | I.c./year | I.c./year | m³/d | I.c./litre | I.c./year | I.c./year | I.c./year | | | 13 | 100 | 100 | 50 | 0 | 250 | 12.75 | 2.69 | 7,347 | 0 | 7,347 | | Table 34: Spreadsheet for the economic calculation of DEWATS (based on annual costs). ### Viability of using biogas Whether using biogas is economically viable depends on the additional investments to facilitate storage, transport and utilisation of biogas – and, if these costs can be recovered by the income generated by biogas production within a reasonable time. The payback period is considered to be an adequate indicator of viability. Formulas of spreadsheet "viability of biogas" $B4 = 6.5\% \times A4$ For rough calculation, it is assumed that additional construction costs are 6.5% of original costs, which includes investment for making the reactor roof gas-tight, providing additional volume for gas storage, and for gas distribution and supply pipes. $D4 = 50\% \times C4$ To guarantee permanent gas supply, additional care must be taken at the site; it is assumed that operational costs are 50% higher than without biogas use. F4 = B4 / (E4 - D4) Negative values show that costs will never be recovered. | | А | В | С | D | Е | F | | | | | | |---|---|--|--|--|-----------------------|--|--|--|--|--|--| | 1 | Economic viability of using biogas | | | | | | | | | | | | 2 | investment
cost without
use of biogas | additional
constr. cost
to facilitate
use of biogas | operational
cost without
use of biogas | additional
operational
cost to use
biogas | income from
biogas | pay back
period of
additional cost | | | | | | | 3 | I.c. | I.c. | I.c./year
| I.c./year | I.c./year | years | | | | | | | 4 | 307,000 | 19,955 | 250 | 125 | 3,650 | 5.7 | | | | | | Table 35: Spreadsheet for calculating the viability of necessary measures to facilitate biogas utilisation ## 10.4 Using spreadsheets without a computer Not everybody uses a computer; some may not even have access to one. But, computer formulas may also be useful to those who usually work with a pocket calculator. The following explanations are presented for them. The calculation for the septic tank (see Table 36) is a good example: A computer table is made up of cells. The location of each cell within the table is described by columns A.....X, AA...AX, etc. and rows 1.....>1000. Each cell within the table, therefore, has an exact address. For example, the first cell in the top left corner has the address A1 (column A, row 1). In the table below, cell J10 reads m^3/d and cell D5 reads 633. Cell I11 reads 23.25; this figure is the result of a formula hidden "under" it. On the computer, the formula appears in the head-line every time one clicks on the cell. These formulas can also be applied without a computer, in connection with the various graphs. One must realise, however, that the computer writing differs from normal mathematical writing in some points: for example, $4/(3\times2)$ is written as = 4/3/2 on the computer, and $4\times2/3$ may be written either 4*2/3 or 4/3*2. | | А | В | С | D | Е | F | G | Н | I | J | | |----|---|--|---|------------------------|----------------------------|--------------------|-------------------------------|---------------------------|------------------------------------|---|--| | 1 | General spreadsheet for septic tank, input and treatment data | | | | | | | | | | | | 2 | daily
waste-
water
flow | time of
most
waste-
water
flow | max. flow
at peak
hours | COD
inflow | BOD ₅
inflow | HRT inside
tank | settleable
SS/COD
ratio | COD
removal
rate | COD
outflow | BOD ₅
outflow | | | 3 | given | given | calcul. | given | given | chosen | given | calcul. | calcul. | calcul. | | | 4 | m³/day | h | m³/h | mg/l | mg/l | h | mg/l | % | mg/l | mg/l | | | 5 | 13.0 | 12 | 1.08 | 633 | 333 | 18 | 0.42 | 35 | 411 | 209 | | | 6 | | | С | OD/BOD ₅ -> | 1.90 | 12 - 24 | 0.35 - 0.45 d | omestic | BOD rem> | 1.06 | | | 7 | | | | | dimensions | of septic tank | | | | | | | 8 | deslud-
ging
interval | inner
width of
septic tank | min. water
depth
at outlet
point | | gth of first
mber | length o
char | | volume
incl.
sludge | actual
volume of
septic tank | biogas
70% CH ₄
50% dis-
solved | | | 9 | chosen | chosen | chosen | requir. | chosen | requir. | chosen | requir. | check | calcul. | | | 10 | months | m | m | m | m | m | m | m³ | m³ | m³/d | | | 11 | 12 | 2.50 | 2.00 | 3.13 | 3.10 | 1.56 | 1.55 | 23.46 | 23.25 | 0.72 | | | 12 | | | | | | sludge | I/g BOD rem. | 0.0042 | | | | Table 36: Sample spreadsheet used to help understand computer formulas Cell A5 and all other bold written figures contain information to be collected and do not comprise formulas. The cells with hidden formulas are these: ``` C5 = A5 / B5 ``` Meaning: $13.0 [m^3/d] / 12 [hours] = 1.08 [m^3/hours]$ ``` H5 = G5 / 0.6 x IF (F5 < 1; F5 x 0.3; IF (F5 < 3; (F5 - 1) x 0.1 / 2 + 0.3; IF (F5 < 30; (F5 - 3) x 0.15 / 27 + 0.4; 0.55))) ``` Meaning: (0.42 [mg/l / mg/l] / 0.6 [a given factor found by experience]) multiplied by the value taken from Picture 10 6 at 18 hours HRT (shown in cell F5). The calculation is, therefore: ``` (0.42 / 0.6) \times 0.495 = 0.35 = 35\% \text{ (which is shown in cell H5)} I5 = (1 - H5) \times D5 (1 - 0.35) \times 633 = 411 \text{ (shown in cell I5)} J5 = (1 - H5 \times J6) \times E5 (1 - 0.35 \times 1.06) \times 333 E6 = D5 / E5 633 / 333 = 1.90 J6 = IF \text{ (H5 < 0.5; 1.06; IF (H5 < 0.75; (H5 - 0.5) \times 0.065 / 0.25 + 1.06; IF (H5 < 0.85; 1.125 - (H5 - 0.75) \times 0.1 / 0.1; 1.025)))} ``` This formula refers to Picture 10_3. Since cell H5 (the removal rate) is 35%, the value of cell J6 is found in the graph and equals 1.06. ``` D11 = 2/3 x H11 / B11 / C11 ((2/3) x 23.46) / (2.50 x 2.00) = 3.13 F11 = D11 / 2 3.13 / 2 = 1.56 H11 = IF (H12 x (E5 - J5) / 1000 x A11 x 30 x A5 + C5 x F5 < 2 x A5 x F5 / 24; 2 x A5 x F5 / 24; H12 x (E5 - J5) / 1000 x A11 x 30 x A5 + C5 x F5) + 0.2 x B11 x E11 ``` The formula refers via cell H12 to Picture 10_5; cell H12 must be calculated first. The formula H11 states that the total volume must be at least twice the sludge volume. One has to check whether the total volume must be calculated via the hydraulic retention time or via the double sludge volume. The total volume equals the sludge volume, which is $0.0042 \times (333 - 209) \times 12 \times 30$ [days/month] $\times 13.0 / 1000$, plus the volume of water, which is $1.08 \times 18 = 21.88 \text{m}^3$. This is compared to $2 \times 13.0 \times 18 / 24$ [hours/day], which equals 19.50 m^3 . Since 21.88 is the larger of the two, it must be used. Finally, the volume of 20cm of scum must be added, which is $0.2 \times 2.50 \times 3.10 = 1.55$. The total volume is 21.88 + 1.55 = 23.43 (the computer is slightly more exact and states 23.46m^3 in cell H11. ``` \begin{aligned} & 111 = (E11 + G11) \times C11 \times B11 \\ & (3.10 + 1.55) \times 2.00 \times 2.50 = 23.25 \text{m}^3 \end{aligned} & J11 = (D5 - I5) \times A5 \times 0.35 / 1000 / 0.7 \times 0.5 \\ & (633 - 411) \times 13.0 \times 0.35 \times 0.5 / (1000 \times 0.7) = 0.72 \text{m}^3 \end{aligned} ``` ``` H12 = 0.005 \times IF (A11 < 36; 1 - A11 \times 0.014; IF (A11 < 120; 0.5 - (A11 - 36) \times 0.002; 1/3)) ``` The last formula refers to Picture 10_5. The desludging interval is 12 months (cell A11), which results in a value of approximately 80% in the graph; this figure is multiplied by the sludge-production figure of 0.005. The calculation is, therefore: $0.8 \times 0.005 = 0.004$ (the computer calculates 0.0042).