Introduction

Background
The optimisation of water treatment technologies that are people-centred, i.e. managed by people, especially in small communities, must be an ongoing practice. This is particularly important to ensure sustainability.

Many conventional water treatment schemes (coagulation, flocculation sedimentation, rapid sand filtration) used in rural/small communities, especially in developing countries, are usually unsustainable (Mwiinga, 2002). This is usually attributed to their complexity and high operation/maintenance costs, especially with respect to the pre-treatment processes.

Roughing filtration (RF) is a simple pre-treatment technology, using gravel to reduce turbidity in raw water without the aid of coagulation (Wegelin, 1996; Galvis et al., 1998). It has the potential to be sustainable in small and/or rural communities. The absence of coagulation make practical applications of RF limited to less than 150 NTU raw water with easily settled suspended solids. High turbidity and colloidal raw water is bound render RF ineffective (Wegelin, 1996, Mwiinga et al. 2002).

Types of roughing filtration and experiences
Figure 2 shows the different types of RF, distinguished by the flow direction and filter media configuration.

The horizontal-flow roughing filtration (HRF) type was the first to be used in public water supply (Baker, 1981). Hence, during the resurgence era (beginning 1980) of the RF technology, HRF type received wide application. Because of its longer filter length, it provides longer retention times and thus permits better removal of suspended solids by gravitational settling and attachment mechanisms than in the other types. However, later practical application experiences have indicated that the upflow types can perform better (Ingallinella et al., 1998). Ingallinella et al. (1998) evaluated a full-scale HRF plant, subjected to high turbidity raw water (400 NTU) without coagulation. Its turbidity removal efficiency was < 50%. Up-flow roughing filtration in series (URFS) with coagulation (60 mg/l) were then tested and produced a less 5 NTU effluent.

Up flow roughing filtration in layers (URFL)
URFL offers a competitive option to HRF and URFS in terms of capital costs, operation & maintenance. However its comparatively shorter filter length hinders its performance. Nevertheless, simple coagulation is likely to improve its performance.

Aim
The main aim of the study was to investigate the impacts of coagulation on URFL with respect to the effluent quality, headloss development and filter runs, sludge build-up and filter media cleaning. The attendant interest was to study how irregular and intermittent low dose coagulation can influence URFL performance.

Methods and materials
The study was carried out on a small-scale plant made of upflow roughing filtration in layers (URFL) followed by slow sand filtration (SSF).

Description of the plant
Layout
Figure 1 shows the schematic layout of the plant, consisting of two identical production lines, of which one was preceded
by coagulation. Chemical dosing was achieved by a Simple Chemical Dosing System (SCDS), operated by gravity (see Photograph 1). The SCDS development was part of the project. Photograph 2 shows the full plant.

**Design of URFL and SSF units**

Each URFL filter unit had 3 layers of filter gravel (20cm top layer, 1.18-4.75mm; 40cm middle layer, 4.75 – 9.51mm; 60cm bottom layer, 9.51 - 19.1mm). A 20cm gravel layer (25-35mm) supported the bottom layer and a 20cm gravel layer (25-35mm) overlaid the top layer to provide shading to prevent the supernatant algae blooms.

Each URFL unit was constructed in 3 segments of opaque uPVC cylindrical units; each segment was provided with 2 transparent windows opposite to each other, which allowed viewing of the filter media in each of the three layers and thus observations of the accumulation of suspended solids/flocs (see Photograph 2). A conical bottom of each URFL unit facilitated the fast drainage of returned suspended solids.

SSF filter media was a 80cm deep sand-bed with an 80 cm depth of supernatant water. Sieve analysis of the sand used in the SSF revealed an effective diameter (de) of 0.21mm, and a uniformity coefficient (UC) of 3, which meet the specifications for SSF filter media. A 20cm graded gravel layer (1.18 to 19.1 mm) supported the SSF sand-bed. SSF units were constructed in two segments of opaque uPVC cylindrical units; each segment was provided with 2 transparent windows, to allow viewing the filter media and supernatant water (see Photograph 2). The support gravel was placed in conical bottom attached to the cylinders.

**Operation and maintenance**

Data were collected over four periods between November 2002 and December 2003. The reported data were collected over the following periods:

- Period 1: 6th November – 2nd December 2002
- Period 2: 17th December 02 – 24 March 2003
- Period 3: 27th September – 22nd October 2003
- Period 4: 23rd October – 1st December 2003

URFLs were operated at an average filtration rate of 0.5
m/h, except in period 4 when a filtration rate of 0.9 m/h was applied. SSFs were operated at an average filtration of 0.15 m/h.

Daily operation activities for both SSF and URFL included checking flow rates using rotameters, analysing influent and effluent water quality, and reading off head-loss development. Ensuring continuous flow and adequate simulation of raw water was one of the daily operations.

Daily maintenance activities involved checking for any damage to or leakage from the plant, observing the accumulation of flocs in the URFL and keeping the plant area tidy. The accumulation of flocs in the URFL was observed through the transparent windows.

Raw water and data collection
Raw water turbidity was simulated using tap water and Kaolin clay. Approximately 0.5 g of the kaolin clay when mixed with 1000 ml of tap water gave a turbidity of 100 NTU. A peristaltic pump was used to dose clay suspension at constant rates into a raw water feeder tank for the plant.

The main water quality parameter analysed in the influent and effluents of both URFL and SSF was turbidity. The measurements were done on site using a HACH 2000P portable turbidimeter. At least three samples of the influent and effluent of both URFL and SSF were taken for analysis on each day of sampling. Raw water pH, conductivity and temperature were occasionally measured.

Other data collected included filter-runs and headloss development.

Coagulation and flocculation
Coagulation was achieved using granular aluminium sulphate (trade name ALUM). The ALUM solution was prepared in a 500 L container and fed to the SCDS by gravity. The ALUM solution was dosed at the inlet weir of URFL-1 where there was high mixing energy to ensure rapid dispersion of the solution for effective coagulation. A dosage of 10-15 mg/L was applied. Flocculation then took place within the URFL gravel media.

The strength of the ALUM stock solution was 0.02%, less than the recommended minimum of 1%. ALUM solutions of strength lower than 1% (10 g/L) are reported to cause the coagulant chemical to hydrolyse and form agglomerates which reduce the coagulation effectiveness (Holfkes, 1988). It was not feasible to prepare and dose ALUM stock solution of strength greater than 1% because of the low capacity of the plant. Hence coagulation process was expected not to be very effective because of the possible hydrolysis of ALUM as pointed out by Holfkes, 1988.

Results and Discussions
Raw water turbidity simulation
Table 1 shows the daily average turbidity that was fed to production lines 1 and 2.

<table>
<thead>
<tr>
<th>Period</th>
<th>Minimum</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Line 1 (Coagulated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>19.4</td>
<td>53.6</td>
<td>177</td>
</tr>
<tr>
<td>Period 2</td>
<td>10.0</td>
<td>94.3</td>
<td>363</td>
</tr>
<tr>
<td>Period 3</td>
<td>34.5</td>
<td>91.0</td>
<td>432</td>
</tr>
<tr>
<td>Period 4</td>
<td>2.28*</td>
<td>65.5</td>
<td>219</td>
</tr>
<tr>
<td>Production Line 2 (No coagulant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period 1</td>
<td>22.1</td>
<td>70.3</td>
<td>339</td>
</tr>
<tr>
<td>Period 2</td>
<td>Not run</td>
<td>56.2</td>
<td>326</td>
</tr>
<tr>
<td>Period 3</td>
<td>23.9</td>
<td>89.9</td>
<td>434</td>
</tr>
<tr>
<td>Period 4</td>
<td>2.58*</td>
<td>68.1</td>
<td>280</td>
</tr>
</tbody>
</table>

Table 1. Turbidity analysis of the raw water (NTU)

URFL and SSF effluent turbidity analysis
Figures 3, 4, 5 and 6 show the average turbidity analysis over the four periods. Table 2 summarises the minimum, average and maximum in each period.

Period 1: See Figure 3
Both production lines were operated in this period. Coagulation was applied continuously.

Of the 42 URFL-1 effluent samples analysed, 2 had > 10 NTU turbidity (10.5 & 12.7 NTU); 5 had turbidity between 5 & 10 NTU; the rest recorded less than 5 NTU. Of the 39 URFL-2 effluent samples, none had turbidity < 5 NTU (11 were between 5 & 10 NTU; 22 between 10 & 20 NTU; and the rest above 20 NTU. Both operated for 26 days without reaching terminal headloss, although URFL-2 effluent turbidity started increasing to above 15 NTU after 14 days.
SSF-1 effluent showed a better average turbidity than SSF-2, an indication that turbidity levels can also affect SSF performance.

**Period 2: See Figure 4**
Only production line 1 was investigated in this period. Coagulation was only applied during daylight. Intermittent coagulation was applied by stopping the dosing when URFL effluents showed turbidity less than 1 NTU and restoring dosing when turbidity levels increased. The first 2 days had turbidity less than 1 NTU and on day 3 coagulation was stopped and on the same day the effluent turbidity increased to 3.53 NTU which later rose to 5.14 NTU on day 7. On day 8 coagulation was restored and effluent turbidity dropped to 0.89 NTU. The longest period, over which URFL-1 operated without coagulation but still produced less 5 NTU effluents, was 15 days! This was after there was visible increase in the sludge build-up as observed through the transparent windows (see Photograph 3).

**Period 3: See Figure 5**
Both production lines were operated in this period. URFL –1 run for 22 days with an average effluent turbidity of 6.63 NTU. On the 23rd and 24th day, effluent turbidity increased due to excessive sludge accumulation. URFL –2’s average effluent turbidity was 13.8 NTU.

Between the 3rd and 6th days, inclusive, both URFLs were subjected to high turbidity raw water ranging from 100 NTU to 434 NTU. URFL-1 maintained turbidity effluents less than 10 NTU on the 3rd and 4th days, but increased to between 12.5 and 15.7 NTU on day 5. On day 6 raw water turbidity dropped to less than 100 NTU and URFL effluents also improved to less than 10 NTU for URFL-1. Through this same period, URFL-2 effluent turbidity increased to between 15.4 and 47.8 NTU! This indicated the capacity of coagulated URFL to better handle sudden increases in turbidity raw water compared to URFL when no coagulation is used.

SSF-1 performed better than SSF-2 as it received better quality effluents from URFL-1. This demonstrates that when URFL is used with coagulation there is a less risk of floc overflows than with conventional URFL units.

**Period 4: See Figure 6**
Both URFLs were operated in this period without SSF. In this period, the filtration rate was increased to 0.9 m/h.

For the first 13 days, URFL-2 (without coagulation) performed better overall, with an average effluent turbidity of 8.46 NTU compared to 15.1 NTU for URFL-1. Both were cleaned on day 13, after which URFL-1 performed better comparatively for 27 days. However, URFL-1 was occasionally drained, once a week, to reduce the amount of flocs retained, which ensured its sustained performance compared to URFL-2. As a result URFL-1 did not reach its maximum headloss.
Table 2. Daily average turbidity analysis

<table>
<thead>
<tr>
<th>Trial Period</th>
<th>URFL-1 Raw water</th>
<th>URFL-2 Raw water</th>
<th>URFL-1 Effluent</th>
<th>URFL-2 Effluent</th>
<th>SSF-1 Effluent</th>
<th>SSF-2 Effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Period 1: 6th Nov – 1st Dec 2002</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>19.4</td>
<td>22.1</td>
<td>0.38</td>
<td>5.54</td>
<td>0.33</td>
<td>0.81</td>
</tr>
<tr>
<td>Average</td>
<td>53.7</td>
<td>70.3</td>
<td>3.30</td>
<td>12.8</td>
<td>0.98</td>
<td>1.81</td>
</tr>
<tr>
<td>Maximum</td>
<td>177</td>
<td>388</td>
<td>12.17</td>
<td>35.9</td>
<td>3.31</td>
<td>4.29</td>
</tr>
<tr>
<td><strong>Period 2: 17th Dec – 24th March 2003</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>10.0</td>
<td>Not run</td>
<td>0.15</td>
<td>Not run</td>
<td>0.14</td>
<td>Not run</td>
</tr>
<tr>
<td>Average</td>
<td>94.4</td>
<td>Not run</td>
<td>4.10</td>
<td>Not run</td>
<td>0.58</td>
<td>Not run</td>
</tr>
<tr>
<td>Maximum</td>
<td>363</td>
<td>Not run</td>
<td>55.2</td>
<td>Not run</td>
<td>1.99</td>
<td>Not run</td>
</tr>
<tr>
<td><strong>Period 3: 27th Sept – 22nd Oct 2003</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>34.5</td>
<td>23.9</td>
<td>1.81</td>
<td>3.86</td>
<td>0.22</td>
<td>0.32</td>
</tr>
<tr>
<td>Average</td>
<td>91.0</td>
<td>89.9</td>
<td>6.63</td>
<td>13.8</td>
<td>0.42</td>
<td>0.64</td>
</tr>
<tr>
<td>Maximum</td>
<td>432</td>
<td>434</td>
<td>21.1</td>
<td>47.8</td>
<td>1.03</td>
<td>1.37</td>
</tr>
<tr>
<td><strong>Period 4: 23rd Oct – 1st Dec 2003</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>2.28</td>
<td>2.58</td>
<td>0.54</td>
<td>0.91</td>
<td>Not run</td>
<td>Not run</td>
</tr>
<tr>
<td>Average</td>
<td>65.5</td>
<td>68.1</td>
<td>10.8</td>
<td>12.9</td>
<td>Not run</td>
<td>Not run</td>
</tr>
<tr>
<td>Maximum</td>
<td>219</td>
<td>280</td>
<td>93.1*</td>
<td>34.43</td>
<td>Not run</td>
<td>Not run</td>
</tr>
</tbody>
</table>

* Recorded on day when there was floc overflow. Without this value, max was 40.7 NTU

Figure 1. Types of roughing filters
Figure 3. Period 1 average turbidity analysis results

Figure 4. Period 2 average turbidity analysis results
Figure 5. Period 3 average turbidity analysis results

Figure 6. Period 4 average turbidity analysis results
Summary of results

1. Coagulation enhances performance of URFL in handling high turbidity raw waters without increasing the chemical dosages. SSF is adequately protected against higher and varying turbidity.

2. Lower coagulant dosages, than in conventional coagulation, are applicable in URFL and can save costs.

3. Intermittent coagulation is feasible in URFL and can save operational costs.

4. Visual observation of URFL filter media cleaning by draining indicated that coagulated flocs were readily washed out. Without coagulation, suspended solids still remained after draining. Coagulated flocs ensure easy cleaning and can prolong the life of the URFL media.

5. Coagulant chemical dosing in URFL does not need stringent control as in conventional coagulation. Simple gravity dosing systems can be used.

Conclusion

Coagulation has a positive impact in enhancing the performance of URFL. Preceded by coagulation, URFL can accommodate raw water turbidity variations without producing unacceptable effluent for SSF (>10NTU) and with minimum floc overflow risk compared to conventional sedimentation tanks. However, regular draining (weekly or as required) is necessary to prevent excessive accumulation of flocs which can lead shorter filter runs.

Well-controlled and maintained coagulation in water treatment is without doubt able to enhance the water purification processes. But reaping the benefits of coagulation without strict attendant operation and maintenance demands that go with conventional high technology chemical dosing systems, is a bonus to the enhanced purification process.

The combination of coagulant chemical dosing using the simple (gravity) chemical dosing system provides a much more appropriate water treatment scheme that is more people-centred in small and rural water supplies than conventional schemes can do.

References


Contact addresses

Godfrey Mwiinga
Lecturer/ Researcher
Peninsula Technikon, Civil Engineering Department, P.O. 1906, Bellville 7535, Cape Town South
Tel + 27 21 959 6663; cell +27 822020826
Fax + 27 21 959 6660
mwiingag@pentech.ac.za

Boikanyo Setlhare
Research Fellow (M.Tech)
Peninsula Technikon, Civil Engineering Department, P.O. 1906, Bellville 7535, Cape Town South
boikanyob@yahoo.com